Show more...Show more...Show more...Show more...Show more...Show more...Show more...Show more...
Record Information
Version1.0
Created at2020-04-17 19:07:25 UTC
Updated at2020-12-07 19:11:32 UTC
CannabisDB IDCDB005081
Secondary Accession NumbersNot Available
Cannabis Compound Identification
Common NameAdenosine diphosphate
DescriptionADP, also known as H3ADP or magnesium ADP, belongs to the class of organic compounds known as purine ribonucleoside diphosphates. These are purine ribobucleotides with diphosphate group linked to the ribose moiety. It is an ester of pyrophosphoric acid with the nucleotide adenine. ADP is a strong basic compound (based on its pKa). Adenosine diphosphate, abbreviated ADP, is a nucleotide. ADP exists in all living species, ranging from bacteria to humans. In humans, ADP is involved in d4-gdi signaling pathway. ADP is a potentially toxic compound. ADP is the product of ATP dephosphorylation by ATPases. ADP is converted back to ATP by ATP synthases. ADP consists of the pyrophosphate group, the pentose sugar ribose, and the nucleobase adenine. Adenosine diphosphate is expected to be in Cannabis as all living plants are known to produce and metabolize it.
Structure
Thumb
Synonyms
Chemical FormulaC10H15N5O10P2
Average Molecular Weight427.2
Monoisotopic Molecular Weight427.0294
IUPAC Name[({[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-3,4-dihydroxyoxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy]phosphonic acid
Traditional Nameadenosine-diphosphate
CAS Registry Number84412-16-8
SMILES
NC1=NC=NC2=C1N=CN2[C@@H]1O[C@H](COP(O)(=O)OP(O)(O)=O)[C@@H](O)[C@H]1O
InChI Identifier
InChI=1S/C10H15N5O10P2/c11-8-5-9(13-2-12-8)15(3-14-5)10-7(17)6(16)4(24-10)1-23-27(21,22)25-26(18,19)20/h2-4,6-7,10,16-17H,1H2,(H,21,22)(H2,11,12,13)(H2,18,19,20)/t4-,6-,7-,10-/m1/s1
InChI KeyXTWYTFMLZFPYCI-KQYNXXCUSA-N
Chemical Taxonomy
Description Belongs to the class of organic compounds known as purine ribonucleoside diphosphates. These are purine ribobucleotides with diphosphate group linked to the ribose moiety.
KingdomOrganic compounds
Super ClassNucleosides, nucleotides, and analogues
ClassPurine nucleotides
Sub ClassPurine ribonucleotides
Direct ParentPurine ribonucleoside diphosphates
Alternative Parents
Substituents
  • Purine ribonucleoside diphosphate
  • Purine ribonucleoside monophosphate
  • Pentose phosphate
  • Pentose-5-phosphate
  • Glycosyl compound
  • N-glycosyl compound
  • 6-aminopurine
  • Monosaccharide phosphate
  • Organic pyrophosphate
  • Pentose monosaccharide
  • Imidazopyrimidine
  • Purine
  • Monoalkyl phosphate
  • Aminopyrimidine
  • Alkyl phosphate
  • Monosaccharide
  • N-substituted imidazole
  • Organic phosphoric acid derivative
  • Phosphoric acid ester
  • Imidolactam
  • Pyrimidine
  • Azole
  • Heteroaromatic compound
  • Imidazole
  • Tetrahydrofuran
  • Secondary alcohol
  • 1,2-diol
  • Azacycle
  • Oxacycle
  • Organoheterocyclic compound
  • Alcohol
  • Organonitrogen compound
  • Organic oxide
  • Organic nitrogen compound
  • Organooxygen compound
  • Organopnictogen compound
  • Organic oxygen compound
  • Primary amine
  • Amine
  • Hydrocarbon derivative
  • Aromatic heteropolycyclic compound
Molecular FrameworkAromatic heteropolycyclic compounds
External Descriptors
Ontology
Physiological effect

Health effect:

Disposition

Route of exposure:

Source:

Biological location:

Physical Properties
StateNot Available
Experimental Properties
PropertyValueReference
Melting PointNot AvailableNot Available
Boiling PointNot AvailableNot Available
Water SolubilityNot AvailableNot Available
logP-2.64Wikipedia
Predicted Properties
PropertyValueSource
logP-1.6ALOGPS
logP-4.7ChemAxon
logS-2.1ALOGPS
pKa (Strongest Acidic)1.77ChemAxon
pKa (Strongest Basic)4ChemAxon
Physiological Charge-2ChemAxon
Hydrogen Acceptor Count12ChemAxon
Hydrogen Donor Count6ChemAxon
Polar Surface Area232.6 ŲChemAxon
Rotatable Bond Count6ChemAxon
Refractivity84.94 m³·mol⁻¹ChemAxon
Polarizability34.24 ųChemAxon
Number of Rings3ChemAxon
BioavailabilityNoChemAxon
Rule of FiveNoChemAxon
Ghose FilterNoChemAxon
Veber's RuleNoChemAxon
MDDR-like RuleYesChemAxon
Spectra
EI-MS/GC-MS
TypeDescriptionSplash KeyView
Predicted GC-MSAdenosine diphosphate, non-derivatized, Predicted GC-MS Spectrum - 70eV, Positivesplash10-004i-5931200000-d741fb674f63c06ad31cSpectrum
Predicted GC-MSAdenosine diphosphate, 2 TMS, Predicted GC-MS Spectrum - 70eV, Positivesplash10-004j-9814310000-161f4ca9b901a0d2af95Spectrum
Predicted GC-MSAdenosine diphosphate, non-derivatized, Predicted GC-MS Spectrum - 70eV, PositiveNot AvailableSpectrum
MS/MS
NMR
Pathways
Pathways
Protein Targets
Enzymes
Transporters
Metal Bindings
Receptors
Transcriptional Factors
Concentrations Data
Not Available
HMDB IDHMDB0001341
DrugBank IDNot Available
Phenol Explorer Compound IDNot Available
FoodDB IDFDB021817
KNApSAcK IDC00019353
Chemspider ID5800
KEGG Compound IDC00008
BioCyc IDADP
BiGG ID33496
Wikipedia LinkAdenosine_diphosphate
METLIN ID6175
PubChem Compound6022
PDB IDNot Available
ChEBI ID16761
References
General ReferencesNot Available

Only showing the first 10 proteins. There are 1081 proteins in total.

Enzymes

General function:
Involved in ATP binding
Specific function:
Catalyzes specific phosphoryl transfer from ATP to UMP and CMP.
Gene Name:
CMPK1
Uniprot ID:
P30085
Molecular weight:
20180.12
General function:
Involved in ATP binding
Specific function:
Required for the phosphorylation of the deoxyribonucleosides deoxycytidine (dC), deoxyguanosine (dG) and deoxyadenosine (dA). Has broad substrate specificity, and does not display selectivity based on the chirality of the substrate. It is also an essential enzyme for the phosphorylation of numerous nucleoside analogs widely employed as antiviral and chemotherapeutic agents.
Gene Name:
DCK
Uniprot ID:
P27707
Molecular weight:
30518.315
General function:
Involved in ATP citrate synthase activity
Specific function:
ATP citrate-lyase is the primary enzyme responsible for the synthesis of cytosolic acetyl-CoA in many tissues. Has a central role in de novo lipid synthesis. In nervous tissue it may be involved in the biosynthesis of acetylcholine.
Gene Name:
ACLY
Uniprot ID:
P53396
Molecular weight:
120838.27
General function:
Involved in acetyl-CoA carboxylase activity
Specific function:
ACC-beta may be involved in the provision of malonyl-CoA or in the regulation of fatty acid oxidation, rather than fatty acid biosynthesis. Carries out three functions: biotin carboxyl carrier protein, biotin carboxylase and carboxyltransferase.
Gene Name:
ACACB
Uniprot ID:
O00763
Molecular weight:
276538.575
General function:
Involved in catalytic activity
Specific function:
Pyruvate carboxylase catalyzes a 2-step reaction, involving the ATP-dependent carboxylation of the covalently attached biotin in the first step and the transfer of the carboxyl group to pyruvate in the second. Catalyzes in a tissue specific manner, the initial reactions of glucose (liver, kidney) and lipid (adipose tissue, liver, brain) synthesis from pyruvate.
Gene Name:
PC
Uniprot ID:
P11498
Molecular weight:
129632.565
General function:
Involved in acetyl-CoA carboxylase activity
Specific function:
Catalyzes the rate-limiting reaction in the biogenesis of long-chain fatty acids. Carries out three functions: biotin carboxyl carrier protein, biotin carboxylase and carboxyltransferase.
Gene Name:
ACACA
Uniprot ID:
Q13085
Molecular weight:
269997.01
General function:
Involved in thymidylate kinase activity
Specific function:
Catalyzes the conversion of dTMP to dTDP.
Gene Name:
DTYMK
Uniprot ID:
P23919
Molecular weight:
23819.105
General function:
Involved in hydrolase activity
Specific function:
In the nervous system, could hydrolyze ATP and other nucleotides to regulate purinergic neurotransmission. Could also be implicated in the prevention of platelet aggregation by hydrolyzing platelet-activating ADP to AMP. Hydrolyzes ATP and ADP equally well.
Gene Name:
ENTPD1
Uniprot ID:
P49961
Molecular weight:
58706.0
General function:
Involved in calcium ion binding
Specific function:
Calcium-dependent nucleotidase with a preference for UDP. The order of activity with different substrates is UDP > GDP > UTP > GTP. Has very low activity towards ADP and even lower activity towards ATP. Does not hydrolyze AMP and GMP. Involved in proteoglycan synthesis.
Gene Name:
CANT1
Uniprot ID:
Q8WVQ1
Molecular weight:
44839.24
General function:
Involved in hydrolase activity
Specific function:
Has a threefold preference for the hydrolysis of ATP over ADP.
Gene Name:
ENTPD3
Uniprot ID:
O75355
Molecular weight:
59104.76

Transporters

General function:
Involved in ATP binding
Specific function:
ATP + H(2)O + phospholipid(In) = ADP + phosphate + phospholipid(Out)
Gene Name:
ATP11C
Uniprot ID:
Q8NB49
Molecular weight:
129476.0
General function:
Involved in ATP binding
Specific function:
ATP + H(2)O + phospholipid(In) = ADP + phosphate + phospholipid(Out)
Gene Name:
ATP11A
Uniprot ID:
P98196
Molecular weight:
129754.6
General function:
Involved in ATP binding
Specific function:
This magnesium-dependent enzyme catalyzes the hydrolysis of ATP coupled with the transport of calcium out of the cell.
Gene Name:
ATP2B3
Uniprot ID:
Q16720
Molecular weight:
134196.025
General function:
Involved in ATP binding
Specific function:
ATP + H(2)O + phospholipid(In) = ADP + phosphate + phospholipid(Out)
Gene Name:
ATP10A
Uniprot ID:
O60312
Molecular weight:
167686.6
General function:
Involved in ATP binding
Specific function:
May play a role in the transport of aminophospholipids from the outer to the inner leaflet of various membranes and the maintenance of asymmetric distribution of phospholipids in the canicular membrane. May have a role in transport of bile acids into the canaliculus, uptake of bile acids from intestinal contents into intestinal mucosa or both
Gene Name:
ATP8B1
Uniprot ID:
O43520
Molecular weight:
143694.1
General function:
Involved in sodium:potassium-exchanging ATPase activity
Specific function:
This is the non-catalytic component of the active enzyme, which catalyzes the hydrolysis of ATP coupled with the exchange of Na(+) and K(+) ions across the plasma membrane. The exact function of the beta-3 subunit is not known
Gene Name:
ATP1B3
Uniprot ID:
P54709
Molecular weight:
31512.3
General function:
Involved in ATP binding
Specific function:
This magnesium-dependent enzyme catalyzes the hydrolysis of ATP coupled with the transport of calcium out of the cell.
Gene Name:
ATP2B1
Uniprot ID:
P20020
Molecular weight:
129515.035
General function:
Involved in hydrogen ion transporting ATP synthase activity, rotational mechanism
Specific function:
Mitochondrial membrane ATP synthase (F(1)F(0) ATP synthase or Complex V) produces ATP from ADP in the presence of a proton gradient across the membrane which is generated by electron transport complexes of the respiratory chain. F-type ATPases consist of two structural domains, F(1) - containing the extramembraneous catalytic core, and F(0) - containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation. Part of the complex F(1) domain and of the central stalk which is part of the complex rotary element. Rotation of the central stalk against the surrounding alpha(3)beta(3) subunits leads to hydrolysis of ATP in three separate catalytic sites on the beta subunits
Gene Name:
ATP5E
Uniprot ID:
P56381
Molecular weight:
5779.7
General function:
Involved in hydrogen ion transporting ATP synthase activity, rotational mechanism
Specific function:
Mitochondrial membrane ATP synthase (F(1)F(0) ATP synthase or Complex V) produces ATP from ADP in the presence of a proton gradient across the membrane which is generated by electron transport complexes of the respiratory chain. F-type ATPases consist of two structural domains, F(1) - containing the extramembraneous catalytic core, and F(0) - containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP turnover in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation. Part of the complex F(1) domain and of the central stalk which is part of the complex rotary element. Rotation of the central stalk against the surrounding alpha(3)beta(3) subunits leads to hydrolysis of ATP in three separate catalytic sites on the beta subunits
Gene Name:
ATP5D
Uniprot ID:
P30049
Molecular weight:
17489.8
General function:
Involved in ATP binding
Specific function:
ATP + H(2)O + phospholipid(In) = ADP + phosphate + phospholipid(Out)
Gene Name:
ATP9A
Uniprot ID:
O75110
Molecular weight:
118581.5

Only showing the first 10 proteins. There are 1081 proteins in total.