Show more...Show more...Show more...Show more...Show more...
Record Information
Version1.0
Created at2020-04-17 19:09:37 UTC
Updated at2020-12-07 19:11:35 UTC
CannabisDB IDCDB005103
Secondary Accession NumbersNot Available
Cannabis Compound Identification
Common NamePyrophosphate
DescriptionPyrophosphate, also known as diphosphorsaeure or H4P2O7, belongs to the class of inorganic compounds known as non-metal pyrophosphates. These are inorganic non-metallic compounds containing a pyrophosphate as its largest oxoanion. Pyrophosphate is a moderately acidic compound (based on its pKa). Pyrophosphate exists in all living species, ranging from bacteria to humans. In humans, pyrophosphate is involved in intracellular signalling through PGD2 receptor and prostaglandin D2. Pyrophosphate is a potentially toxic compound. An acyclic phosphorus acid anhydride obtained by condensation of two molecules of phosphoric acid. Pyrophosphate is expected to be in Cannabis as all living plants are known to produce and metabolize it.
Structure
Thumb
Synonyms
ValueSource
[(HO)2P(O)OP(O)(OH)2]ChEBI
Acide diphosphoriqueChEBI
DiphosphorsaeureChEBI
H4P2O7ChEBI
Pyrophosphoric acidChEBI
PyrophosphorsaeureChEBI
Diphosphoric acidKegg
PPiKegg
DiphosphateGenerator
PYROphosphATEChEBI
Na4p2O7MeSH, HMDB
PPi CPDMeSH, HMDB
Chemical FormulaH4O7P2
Average Molecular Weight177.98
Monoisotopic Molecular Weight177.9432
IUPAC Name(phosphonooxy)phosphonic acid
Traditional Namepyrophosphoric acid
CAS Registry Number33943-49-6
SMILES
OP(O)(=O)OP(O)(O)=O
InChI Identifier
InChI=1S/H4O7P2/c1-8(2,3)7-9(4,5)6/h(H2,1,2,3)(H2,4,5,6)
InChI KeyXPPKVPWEQAFLFU-UHFFFAOYSA-N
Chemical Taxonomy
Description Belongs to the class of inorganic compounds known as non-metal pyrophosphates. These are inorganic non-metallic compounds containing a pyrophosphate as its largest oxoanion.
KingdomInorganic compounds
Super ClassHomogeneous non-metal compounds
ClassNon-metal oxoanionic compounds
Sub ClassNon-metal pyrophosphates
Direct ParentNon-metal pyrophosphates
Alternative Parents
Substituents
  • Non-metal pyrophosphate
  • Inorganic oxide
Molecular FrameworkNot Available
External Descriptors
Ontology
Disposition

Route of exposure:

Source:

Biological location:

Role

Indirect biological role:

Physical Properties
StateNot Available
Experimental Properties
PropertyValueReference
Melting Point61 °CNot Available
Boiling PointNot AvailableNot Available
Water SolubilityNot AvailableNot Available
logPNot AvailableNot Available
Predicted Properties
PropertyValueSource
logP-1.4ChemAxon
pKa (Strongest Acidic)1.7ChemAxon
Physiological Charge-3ChemAxon
Hydrogen Acceptor Count6ChemAxon
Hydrogen Donor Count4ChemAxon
Polar Surface Area124.29 ŲChemAxon
Rotatable Bond Count2ChemAxon
Refractivity25.52 m³·mol⁻¹ChemAxon
Polarizability10.28 ųChemAxon
Number of Rings0ChemAxon
BioavailabilityYesChemAxon
Rule of FiveYesChemAxon
Ghose FilterNoChemAxon
Veber's RuleNoChemAxon
MDDR-like RuleNoChemAxon
Spectra
EI-MS/GC-MS
TypeDescriptionSplash KeyView
GC-MSPyrophosphate, non-derivatized, GC-MS Spectrumsplash10-0002-0972000000-a80f120dd426991d6effSpectrum
GC-MSPyrophosphate, non-derivatized, GC-MS Spectrumsplash10-0udi-0741900000-9c5b3c334561dd282116Spectrum
GC-MSPyrophosphate, non-derivatized, GC-MS Spectrumsplash10-03di-0920000000-a5ad76aa129d898d71f8Spectrum
GC-MSPyrophosphate, non-derivatized, GC-MS Spectrumsplash10-03di-0910000000-531d3e19493dc29d6e5cSpectrum
GC-MSPyrophosphate, 4 TMS, GC-MS Spectrumsplash10-0udi-0320900000-0abbcb28a43d7e24fe81Spectrum
GC-MSPyrophosphate, non-derivatized, GC-MS Spectrumsplash10-0udi-0320900000-0abbcb28a43d7e24fe81Spectrum
Predicted GC-MSPyrophosphate, non-derivatized, Predicted GC-MS Spectrum - 70eV, Positivesplash10-0002-9200000000-47d5c2340766aaf36e95Spectrum
Predicted GC-MSPyrophosphate, non-derivatized, Predicted GC-MS Spectrum - 70eV, PositiveNot AvailableSpectrum
MS/MS
NMRNot Available
Pathways
Pathways
Protein Targets
Enzymes
Transporters
Protein NameGene NameLocusUniprot IDDetails
Very long-chain acyl-CoA synthetaseSLC27A215q21.2O14975 details
Bile acyl-CoA synthetaseSLC27A519q13.43Q9Y2P5 details
Acyl-CoA synthetase family member 4AASDH4q12Q4L235 details
Metal Bindings
Receptors
Transcriptional Factors
Concentrations Data
Not Available
HMDB IDHMDB0155221
DrugBank IDDB04160
Phenol Explorer Compound IDNot Available
FoodDB IDNot Available
KNApSAcK IDC00019561
Chemspider IDNot Available
KEGG Compound IDC00013
BioCyc IDPPI
BiGG IDNot Available
Wikipedia LinkPyrophosphate
METLIN IDNot Available
PubChem Compound1023
PDB IDNot Available
ChEBI ID29888
References
General ReferencesNot Available

Only showing the first 10 proteins. There are 566 proteins in total.

Enzymes

General function:
Involved in acetate-CoA ligase activity
Specific function:
Activates acetate so that it can be used for lipid synthesis or for energy generation.
Gene Name:
ACSS2
Uniprot ID:
Q9NR19
Molecular weight:
78579.11
General function:
Involved in acetate-CoA ligase activity
Specific function:
Important for maintaining normal body temperature during fasting and for energy homeostasis. Essential for energy expenditure under ketogenic conditions (By similarity). Converts acetate to acetyl-CoA so that it can be used for oxidation through the tricarboxylic cycle to produce ATP and CO(2).
Gene Name:
ACSS1
Uniprot ID:
Q9NUB1
Molecular weight:
74625.88
General function:
Involved in arylesterase activity
Specific function:
Has low activity towards the organophosphate paraxon and aromatic carboxylic acid esters. Rapidly hydrolyzes lactones such as statin prodrugs (e.g. lovastatin). Hydrolyzes aromatic lactones and 5- or 6-member ring lactones with aliphatic substituents but not simple lactones or those with polar substituents.
Gene Name:
PON3
Uniprot ID:
Q15166
Molecular weight:
39607.185
General function:
Involved in fucose-1-phosphate guanylyltransferase acti
Specific function:
Catalyzes the formation of GDP-L-fucose from GTP and L-fucose-1-phosphate. Functions as a salvage pathway to reutilize L-fucose arising from the turnover of glycoproteins and glycolipids.
Gene Name:
FPGT
Uniprot ID:
O14772
Molecular weight:
37630.405
General function:
Involved in transferase activity
Specific function:
Not Available
Gene Name:
FDFT1
Uniprot ID:
P37268
Molecular weight:
48114.87
General function:
Involved in nucleotide binding
Specific function:
Not Available
Gene Name:
FARSA
Uniprot ID:
Q9Y285
Molecular weight:
57563.225
General function:
Involved in nucleotide binding
Specific function:
Catalyzes direct attachment of p-Tyr (Tyr) to tRNAPhe. Permits also, with a lower efficiency, the attachment of m-Tyr to tRNAPhe, thereby opening the way for delivery of the misacylated tRNA to the ribosome and incorporation of ROS-damaged amino acid into proteins.
Gene Name:
FARS2
Uniprot ID:
O95363
Molecular weight:
52356.21
General function:
Involved in oxidoreductase activity
Specific function:
Multifunctional enzyme mediating important protective effects. Metabolizes betaine aldehyde to betaine, an important cellular osmolyte and methyl donor. Protects cells from oxidative stress by metabolizing a number of lipid peroxidation-derived aldehydes. Involved in lysine catabolism.
Gene Name:
ALDH7A1
Uniprot ID:
P49419
Molecular weight:
58486.74
General function:
Involved in amidophosphoribosyltransferase activity
Specific function:
Not Available
Gene Name:
PPAT
Uniprot ID:
Q06203
Molecular weight:
57398.52
General function:
Involved in nucleotidyltransferase activity
Specific function:
Catalyzes the formation of NAD(+) from nicotinamide mononucleotide (NMN) and ATP. Can also use the deamidated form; nicotinic acid mononucleotide (NaMN) as substrate with the same efficiency. Can use triazofurin monophosphate (TrMP) as substrate. Also catalyzes the reverse reaction, i.e. the pyrophosphorolytic cleavage of NAD(+). For the pyrophosphorolytic activity, prefers NAD(+) and NAAD as substrates and degrades NADH, nicotinic acid adenine dinucleotide phosphate (NHD) and nicotinamide guanine dinucleotide (NGD) less effectively. Fails to cleave phosphorylated dinucleotides NADP(+), NADPH and NAADP(+). Protects against axonal degeneration following mechanical or toxic insults.
Gene Name:
NMNAT1
Uniprot ID:
Q9HAN9
Molecular weight:
31932.22

Transporters

General function:
Involved in catalytic activity
Specific function:
Acyl-CoA synthetase probably involved in bile acid metabolism. Proposed to activate C27 precurors of bile acids to their CoA thioesters derivatives before side chain cleavage via peroxisomal beta-oxidation occurs. In vitro, activates 3-alpha,7-alpha,12-alpha-trihydroxy-5-beta-cholestanate (THCA), the C27 precursor of cholic acid deriving from the de novo synthesis from cholesterol. Does not utilize C24 bile acids as substrates. In vitro, also activates long- and branched-chain fatty acids and may have additional roles in fatty acid metabolism. May be involved in translocation of long-chain fatty acids (LFCA) across membranes (By similarity).
Gene Name:
SLC27A2
Uniprot ID:
O14975
Molecular weight:
64614.99
General function:
Involved in catalytic activity
Specific function:
Acyl-CoA synthetase involved in bile acid metabolism. Proposed to catalyze the first step in the conjugation of C24 bile acids (choloneates) to glycine and taurine before excretion into bile canaliculi by activating them to their CoA thioesters. Seems to activate secondary bile acids entering the liver from the enterohepatic circulation. In vitro, also activates 3-alpha,7-alpha,12-alpha-trihydroxy-5-beta-cholestanate (THCA), the C27 precursor of cholic acid deriving from the de novo synthesis from cholesterol.
Gene Name:
SLC27A5
Uniprot ID:
Q9Y2P5
Molecular weight:
75384.375
General function:
Involved in acyl carrier activity
Specific function:
Acyl-CoA synthases catalyze the initial reaction in fatty acid metabolism, by forming a thioester with CoA
Gene Name:
AASDH
Uniprot ID:
Q4L235
Molecular weight:
122596.1

Only showing the first 10 proteins. There are 566 proteins in total.