Read more...Show more...Show more...Show more...Show more...Show more...Show more...Show more...
Record Information
Version1.0
Created at2020-04-17 19:09:01 UTC
Updated at2020-12-07 19:11:34 UTC
CannabisDB IDCDB005097
Secondary Accession NumbersNot Available
Cannabis Compound Identification
Common NameGuanosine triphosphate
Description
Structure
Thumb
Synonyms
ValueSource
5'-GTPChEBI
Guanosine 5'-triphosphateChEBI
Guanosine 5'-triphosphoric acidChEBI
GUANOSINE-5'-triphosphATEChEBI
H4GTPChEBI
GUANOSINE-5'-triphosphoric acidGenerator
Guanosine triphosphoric acidGenerator
GTGHMDB
GTPHMDB
Guanosine 5'-(tetrahydrogen triphosphate)HMDB
Guanosine 5'-triphosphorateHMDB
Guanosine mono(tetrahydrogen triphosphate) (ester)HMDB
Triphosphate, guanosineHMDB
Chemical FormulaC10H16N5O14P3
Average Molecular Weight523.18
Monoisotopic Molecular Weight522.9907
IUPAC Name({[({[(2R,3S,4R,5R)-5-(2-amino-6-oxo-6,9-dihydro-1H-purin-9-yl)-3,4-dihydroxyoxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)phosphonic acid
Traditional Nametriphosphate, guanosine
CAS Registry Number86-01-1
SMILES
NC1=NC2=C(N=CN2[C@@H]2O[C@H](COP(O)(=O)OP(O)(=O)OP(O)(O)=O)[C@@H](O)[C@H]2O)C(=O)N1
InChI Identifier
InChI=1S/C10H16N5O14P3/c11-10-13-7-4(8(18)14-10)12-2-15(7)9-6(17)5(16)3(27-9)1-26-31(22,23)29-32(24,25)28-30(19,20)21/h2-3,5-6,9,16-17H,1H2,(H,22,23)(H,24,25)(H2,19,20,21)(H3,11,13,14,18)/t3-,5-,6-,9-/m1/s1
InChI KeyXKMLYUALXHKNFT-UUOKFMHZSA-N
Chemical Taxonomy
Description Belongs to the class of organic compounds known as purine ribonucleoside triphosphates. These are purine ribobucleotides with a triphosphate group linked to the ribose moiety.
KingdomOrganic compounds
Super ClassNucleosides, nucleotides, and analogues
ClassPurine nucleotides
Sub ClassPurine ribonucleotides
Direct ParentPurine ribonucleoside triphosphates
Alternative Parents
Substituents
  • Purine ribonucleoside triphosphate
  • Purine ribonucleoside monophosphate
  • Pentose phosphate
  • Pentose-5-phosphate
  • Glycosyl compound
  • N-glycosyl compound
  • Monosaccharide phosphate
  • Imidazopyrimidine
  • Purine
  • Monoalkyl phosphate
  • Hydroxypyrimidine
  • Alkyl phosphate
  • Pyrimidine
  • Monosaccharide
  • Phosphoric acid ester
  • N-substituted imidazole
  • Organic phosphoric acid derivative
  • Heteroaromatic compound
  • Azole
  • Imidazole
  • Tetrahydrofuran
  • Secondary alcohol
  • 1,2-diol
  • Oxacycle
  • Organoheterocyclic compound
  • Azacycle
  • Organopnictogen compound
  • Organic oxide
  • Hydrocarbon derivative
  • Alcohol
  • Organic oxygen compound
  • Organic nitrogen compound
  • Organonitrogen compound
  • Organooxygen compound
  • Aromatic heteropolycyclic compound
Molecular FrameworkAromatic heteropolycyclic compounds
External Descriptors
Ontology
Physiological effect

Health effect:

Disposition

Route of exposure:

Source:

Biological location:

Role

Industrial application:

Physical Properties
StateSolid
Experimental Properties
PropertyValueReference
Melting PointNot AvailableNot Available
Boiling PointNot AvailableNot Available
Water SolubilityNot AvailableNot Available
logPNot AvailableNot Available
Predicted Properties
PropertyValueSource
logP-0.63ALOGPS
logP-3.7ChemAxon
logS-1.7ALOGPS
pKa (Strongest Acidic)0.9ChemAxon
pKa (Strongest Basic)-1.9ChemAxon
Physiological Charge-3ChemAxon
Hydrogen Acceptor Count14ChemAxon
Hydrogen Donor Count8ChemAxon
Polar Surface Area294.81 ŲChemAxon
Rotatable Bond Count8ChemAxon
Refractivity97.24 m³·mol⁻¹ChemAxon
Polarizability39.81 ųChemAxon
Number of Rings3ChemAxon
BioavailabilityNoChemAxon
Rule of FiveNoChemAxon
Ghose FilterNoChemAxon
Veber's RuleNoChemAxon
MDDR-like RuleYesChemAxon
Spectra
EI-MS/GC-MS
TypeDescriptionSplash KeyView
Predicted GC-MSGuanosine triphosphate, non-derivatized, Predicted GC-MS Spectrum - 70eV, Positivesplash10-056v-8895330000-0a8a2d408be3cbe00023Spectrum
Predicted GC-MSGuanosine triphosphate, 2 TMS, Predicted GC-MS Spectrum - 70eV, Positivesplash10-0zos-8469026000-e08a35d5d35a9e63303cSpectrum
MS/MS
NMR
Pathways
Pathways
Protein Targets
Enzymes
Transporters
Metal Bindings
Receptors
Transcriptional Factors
Concentrations Data
Not Available
HMDB IDHMDB0001273
DrugBank IDDB04137
Phenol Explorer Compound IDNot Available
FoodDB IDFDB022527
KNApSAcK IDC00007223
Chemspider ID6569
KEGG Compound IDC00044
BioCyc IDGTP
BiGG ID33641
Wikipedia LinkGuanosine triphosphate
METLIN ID6128
PubChem Compound6830
PDB IDNot Available
ChEBI ID15996
References
General ReferencesNot Available

Only showing the first 10 proteins. There are 370 proteins in total.

Enzymes

General function:
Involved in protein binding
Specific function:
Implicated as a critical step in numerous cellular pathways, including signal transduction, membrane trafficking, and the regulation of mitosis. May be involved in the regulation of perinuclear intravesicular membrane traffic (By similarity).
Gene Name:
PLD1
Uniprot ID:
Q13393
Molecular weight:
124183.135
General function:
Involved in hydrolase activity
Specific function:
In the nervous system, could hydrolyze ATP and other nucleotides to regulate purinergic neurotransmission. Could also be implicated in the prevention of platelet aggregation by hydrolyzing platelet-activating ADP to AMP. Hydrolyzes ATP and ADP equally well.
Gene Name:
ENTPD1
Uniprot ID:
P49961
Molecular weight:
58706.0
General function:
Involved in calcium ion binding
Specific function:
Calcium-dependent nucleotidase with a preference for UDP. The order of activity with different substrates is UDP > GDP > UTP > GTP. Has very low activity towards ADP and even lower activity towards ATP. Does not hydrolyze AMP and GMP. Involved in proteoglycan synthesis.
Gene Name:
CANT1
Uniprot ID:
Q8WVQ1
Molecular weight:
44839.24
General function:
Involved in hydrolase activity
Specific function:
Has a threefold preference for the hydrolysis of ATP over ADP.
Gene Name:
ENTPD3
Uniprot ID:
O75355
Molecular weight:
59104.76
General function:
Involved in ATP binding
Specific function:
Phosphorylates uridine and cytidine to uridine monophosphate and cytidine monophosphate. Does not phosphorylate deoxyribonucleosides or purine ribonucleosides. Can use ATP or GTP as a phosphate donor. Can also phosphorylate cytidine and uridine nucleoside analogs such as 6-azauridine, 5-fluorouridine, 4-thiouridine, 5-bromouridine, N(4)-acetylcytidine, N(4)-benzoylcytidine, 5-fluorocytidine, 2-thiocytidine, 5-methylcytidine, and N(4)-anisoylcytidine.
Gene Name:
UCK1
Uniprot ID:
Q9HA47
Molecular weight:
22760.43
General function:
Involved in nucleoside diphosphate kinase activity
Specific function:
Major role in the synthesis of nucleoside triphosphates other than ATP (By similarity).
Gene Name:
NME4
Uniprot ID:
O00746
Molecular weight:
20658.45
General function:
Involved in nucleoside diphosphate kinase activity
Specific function:
Major role in the synthesis of nucleoside triphosphates other than ATP. Possesses nucleoside-diphosphate kinase, serine/threonine-specific protein kinase, geranyl and farnesyl pyrophosphate kinase, histidine protein kinase and 3'-5' exonuclease activities. Involved in cell proliferation, differentiation and development, signal transduction, G protein-coupled receptor endocytosis, and gene expression. Required for neural development including neural patterning and cell fate determination.
Gene Name:
NME1
Uniprot ID:
P15531
Molecular weight:
17148.635
General function:
Involved in nucleoside diphosphate kinase activity
Specific function:
Major role in the synthesis of nucleoside triphosphates other than ATP. The ATP gamma phosphate is transferred to the NDP beta phosphate via a ping-pong mechanism, using a phosphorylated active-site intermediate.
Gene Name:
NME7
Uniprot ID:
Q9Y5B8
Molecular weight:
42491.365
General function:
Involved in nucleoside diphosphate kinase activity
Specific function:
Major role in the synthesis of nucleoside triphosphates other than ATP. Negatively regulates Rho activity by interacting with AKAP13/LBC. Acts as a transcriptional activator of the MYC gene; binds DNA non-specifically (PubMed:8392752). Exhibits histidine protein kinase activity.
Gene Name:
NME2
Uniprot ID:
P22392
Molecular weight:
30136.92
General function:
Involved in nucleoside diphosphate kinase activity
Specific function:
Major role in the synthesis of nucleoside triphosphates other than ATP. The ATP gamma phosphate is transferred to the NDP beta phosphate via a ping-pong mechanism, using a phosphorylated active-site intermediate. Probably has a role in normal hematopoiesis by inhibition of granulocyte differentiation and induction of apoptosis.
Gene Name:
NME3
Uniprot ID:
Q13232
Molecular weight:
19014.85

Transporters

General function:
Involved in binding
Specific function:
Functions in nuclear protein import as an adapter protein for nuclear receptor KPNB1. Binds specifically and directly to substrates containing either a simple or bipartite NLS motif. Docking of the importin/substrate complex to the nuclear pore complex (NPC) is mediated by KPNB1 through binding to nucleoporin FxFG repeats and the complex is subsequently translocated through the pore by an energy requiring, Ran- dependent mechanism. At the nucleoplasmic side of the NPC, Ran binds to importin-beta and the three components separate and importin-alpha and -beta are re-exported from the nucleus to the cytoplasm where GTP hydrolysis releases Ran from importin. The directionality of nuclear import is thought to be conferred by an asymmetric distribution of the GTP- and GDP-bound forms of Ran between the cytoplasm and nucleus. In vitro, mediates the nuclear import of human cytomegalovirus UL84 by recognizing a non- classical NLS
Gene Name:
KPNA1
Uniprot ID:
P52294
Molecular weight:
60221.2
General function:
Involved in binding
Specific function:
Functions in nuclear protein import as an adapter protein for nuclear receptor KPNB1. Binds specifically and directly to substrates containing either a simple or bipartite NLS motif. Docking of the importin/substrate complex to the nuclear pore complex (NPC) is mediated by KPNB1 through binding to nucleoporin FxFG repeats and the complex is subsequently translocated through the pore by an energy requiring, Ran- dependent mechanism. At the nucleoplasmic side of the NPC, Ran binds to importin-beta and the three components separate and importin-alpha and -beta are re-exported from the nucleus to the cytoplasm where GTP hydrolysis releases Ran from importin. The directionality of nuclear import is thought to be conferred by an asymmetric distribution of the GTP- and GDP-bound forms of Ran between the cytoplasm and nucleus
Gene Name:
KPNA2
Uniprot ID:
P52292
Molecular weight:
57861.4
General function:
Involved in binding
Specific function:
Functions in nuclear protein import as an adapter protein for nuclear receptor KPNB1. Binds specifically and directly to substrates containing either a simple or bipartite NLS motif. Docking of the importin/substrate complex to the nuclear pore complex (NPC) is mediated by KPNB1 through binding to nucleoporin FxFG repeats and the complex is subsequently translocated through the pore by an energy requiring, Ran- dependent mechanism. At the nucleoplasmic side of the NPC, Ran binds to importin-beta and the three components separate and importin-alpha and -beta are re-exported from the nucleus to the cytoplasm where GTP hydrolysis releases Ran from importin. The directionality of nuclear import is thought to be conferred by an asymmetric distribution of the GTP- and GDP-bound forms of Ran between the cytoplasm and nucleus. In vitro, mediates the nuclear import of human cytomegalovirus UL84 by recognizing a non- classical NLS. Recognizes NLSs of influenza A virus nucleoprotein probably through ARM repeats 7-9
Gene Name:
KPNA3
Uniprot ID:
O00505
Molecular weight:
57810.4
General function:
Involved in binding
Specific function:
Functions in nuclear protein import as an adapter protein for nuclear receptor KPNB1. Binds specifically and directly to substrates containing either a simple or bipartite NLS motif. Docking of the importin/substrate complex to the nuclear pore complex (NPC) is mediated by KPNB1 through binding to nucleoporin FxFG repeats and the complex is subsequently translocated through the pore by an energy requiring, Ran- dependent mechanism. At the nucleoplasmic side of the NPC, Ran binds to importin-beta and the three components separate and importin-alpha and -beta are re-exported from the nucleus to the cytoplasm where GTP hydrolysis releases Ran from importin. The directionality of nuclear import is thought to be conferred by an asymmetric distribution of the GTP- and GDP-bound forms of Ran between the cytoplasm and nucleus. In vitro, mediates the nuclear import of human cytomegalovirus UL84 by recognizing a non- classical NLS. In vitro, mediates the nuclear import of human cytomegalovirus UL84 by recognizing a nonclassical NLS
Gene Name:
KPNA4
Uniprot ID:
O00629
Molecular weight:
57886.3
General function:
Involved in binding
Specific function:
Functions in nuclear protein import as an adapter protein for nuclear receptor KPNB1. Binds specifically and directly to substrates containing either a simple or bipartite NLS motif. Docking of the importin/substrate complex to the nuclear pore complex (NPC) is mediated by KPNB1 through binding to nucleoporin FxFG repeats and the complex is subsequently translocated through the pore by an energy requiring, Ran- dependent mechanism. At the nucleoplasmic side of the NPC, Ran binds to importin-beta and the three components separate and importin-alpha and -beta are re-exported from the nucleus to the cytoplasm where GTP hydrolysis releases Ran from importin. The directionality of nuclear import is thought to be conferred by an asymmetric distribution of the GTP- and GDP-bound forms of Ran between the cytoplasm and nucleus. Mediates nuclear import of STAT1 homodimers and STAT1/STAT2 heterodimers by recognizing non- classical NLSs of STAT1 and STAT2 through ARM repeats 8-9. Recognizes influenza A virus nucleoprotein through ARM repeat 7-9 In vitro, mediates the nuclear import of human cytomegalovirus UL84 by recognizing a non-classical NLS
Gene Name:
KPNA5
Uniprot ID:
O15131
Molecular weight:
60348.4
General function:
Involved in binding
Specific function:
Functions in nuclear protein import as an adapter protein for nuclear receptor KPNB1. Binds specifically and directly to substrates containing either a simple or bipartite NLS motif. Docking of the importin/substrate complex to the nuclear pore complex (NPC) is mediated by KPNB1 through binding to nucleoporin FxFG repeats and the complex is subsequently translocated through the pore by an energy requiring, Ran- dependent mechanism. At the nucleoplasmic side of the NPC, Ran binds to importin-beta and the three components separate and importin-alpha and -beta are re-exported from the nucleus to the cytoplasm where GTP hydrolysis releases Ran from importin. The directionality of nuclear import is thought to be conferred by an asymmetric distribution of the GTP- and GDP-bound forms of Ran between the cytoplasm and nucleus
Gene Name:
KPNA6
Uniprot ID:
O60684
Molecular weight:
60028.9
General function:
Involved in binding
Specific function:
Functions in nuclear protein import, either in association with an adapter protein, like an importin-alpha subunit, which binds to nuclear localization signals (NLS) in cargo substrates, or by acting as autonomous nuclear transport receptor. Acting autonomously, serves itself as NLS receptor. Docking of the importin/substrate complex to the nuclear pore complex (NPC) is mediated by KPNB1 through binding to nucleoporin FxFG repeats and the complex is subsequently translocated through the pore by an energy requiring, Ran-dependent mechanism. At the nucleoplasmic side of the NPC, Ran binds to importin-beta and the three components separate and importin-alpha and -beta are re- exported from the nucleus to the cytoplasm where GTP hydrolysis releases Ran from importin. The directionality of nuclear import is thought to be conferred by an asymmetric distribution of the GTP- and GDP-bound forms of Ran between the cytoplasm and nucleus. Mediates autonomously the nuclear import of ribosomal proteins RPL23A, RPS7 and RPL5. Binds to a beta-like import receptor binding (BIB) domain of RPL23A. In association with IPO7 mediates the nuclear import of H1 histone. In vitro, mediates nuclear import of H2A, H2B, H3 and H4 histones. In case of HIV-1 infection, binds and mediates the nuclear import of HIV-1 Rev. Imports PRKCI into the nucleus
Gene Name:
KPNB1
Uniprot ID:
Q14974
Molecular weight:
97169.2
General function:
Involved in binding
Specific function:
Functions in nuclear protein import as nuclear transport receptor. Serves as receptor for nuclear localization signals (NLS) in cargo substrates. Is thought to mediate docking of the importin/substrate complex to the nuclear pore complex (NPC) through binding to nucleoporin and the complex is subsequently translocated through the pore by an energy requiring, Ran- dependent mechanism. At the nucleoplasmic side of the NPC, Ran binds to the importin, the importin/substrate complex dissociates and importin is re-exported from the nucleus to the cytoplasm where GTP hydrolysis releases Ran. The directionality of nuclear import is thought to be conferred by an asymmetric distribution of the GTP- and GDP-bound forms of Ran between the cytoplasm and nucleus. Mediates the nuclear import of UBE2E3, and of RPL12
Gene Name:
IPO11
Uniprot ID:
Q9UI26
Molecular weight:
112534.4
General function:
Involved in binding
Specific function:
Functions in nuclear protein import as nuclear transport receptor. Serves as receptor for nuclear localization signals (NLS) in cargo substrates. Is thought to mediate docking of the importin/substrate complex to the nuclear pore complex (NPC) through binding to nucleoporin and the complex is subsequently translocated through the pore by an energy requiring, Ran- dependent mechanism. At the nucleoplasmic side of the NPC, Ran binds to the importin, the importin/substrate complex dissociates and importin is re-exported from the nucleus to the cytoplasm where GTP hydrolysis releases Ran. The directionality of nuclear import is thought to be conferred by an asymmetric distribution of the GTP- and GDP-bound forms of Ran between the cytoplasm and nucleus. Mediates the nuclear import of UBC9, the RBM8A/MAGOH complex, PAX6 and probably other members of the paired homeobox family. Also mediates nuclear export of eIF-1A, and the cytoplasmic release of eIF-1A is triggered by the loading of import substrates onto IPO13
Gene Name:
IPO13
Uniprot ID:
O94829
Molecular weight:
108194.1
General function:
Involved in binding
Specific function:
Functions in nuclear protein import as nuclear transport receptor. Serves as receptor for nuclear localization signals (NLS) in cargo substrates. Is thought to mediate docking of the importin/substrate complex to the nuclear pore complex (NPC) through binding to nucleoporin and the complex is subsequently translocated through the pore by an energy requiring, Ran- dependent mechanism. At the nucleoplasmic side of the NPC, Ran binds to the importin, the importin/substrate complex dissociates and importin is re-exported from the nucleus to the cytoplasm where GTP hydrolysis releases Ran. The directionality of nuclear import is thought to be conferred by an asymmetric distribution of the GTP- and GDP-bound forms of Ran between the cytoplasm and nucleus. Mediates the nuclear import of RPS3A. In vitro, mediates the nuclear import of human cytomegalovirus UL84 by recognizing a non-classical NLS
Gene Name:
IPO4
Uniprot ID:
Q8TEX9
Molecular weight:
118713.8

Only showing the first 10 proteins. There are 370 proteins in total.