Show more...Show more...Show more...Show more...Show more...Show more...
Record Information
Version1.0
Created at2020-04-17 18:48:16 UTC
Updated at2020-12-07 19:11:13 UTC
CannabisDB IDCDB004898
Secondary Accession NumbersNot Available
Cannabis Compound Identification
Common NameFAD
DescriptionFAD, also known as adeflavin or flamitajin b, belongs to the class of organic compounds known as flavin nucleotides. These are nucleotides containing a flavin moiety. Flavin is a compound that contains the tricyclic isoalloxazine ring system, which bears 2 oxo groups at the 2- and 4-positions. FAD is a drug which is used to treat eye diseases caused by vitamin b2 deficiency, such as keratitis and blepharitis. FAD is a strong basic compound (based on its pKa). FAD exists in all living species, ranging from bacteria to humans. In humans, FAD is involved in the metabolic disorder called the medium chain acyl-coa dehydrogenase deficiency (mcad) pathway. Outside of the human body, FAD has been detected, but not quantified in, several different foods, such as other bread, passion fruits, asparagus, kelps, and green bell peppers. This could make FAD a potential biomarker for the consumption of these foods. A FAD in which the substituent at position 10 of the flavin nucleus is a 5'-adenosyldiphosphoribityl group. FAD is expected to be in Cannabis as all living plants are known to produce and metabolize it.
Structure
Thumb
Synonyms
Chemical FormulaC27H33N9O15P2
Average Molecular Weight785.55
Monoisotopic Molecular Weight785.1571
IUPAC Name{[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-3,4-dihydroxyoxolan-2-yl]methoxy}[({[(2R,3S,4S)-5-{7,8-dimethyl-2,4-dioxo-2H,3H,4H,10H-benzo[g]pteridin-10-yl}-2,3,4-trihydroxypentyl]oxy}(hydroxy)phosphoryl)oxy]phosphinic acid
Traditional Nameflavine-adenine dinucleotide
CAS Registry Number146-14-5
SMILES
CC1=CC2=C(C=C1C)N(C[C@H](O)[C@H](O)[C@H](O)COP(O)(=O)OP(O)(=O)OC[C@H]1O[C@H]([C@H](O)[C@@H]1O)N1C=NC3=C1N=CN=C3N)C1=NC(=O)NC(=O)C1=N2
InChI Identifier
InChI=1S/C27H33N9O15P2/c1-10-3-12-13(4-11(10)2)35(24-18(32-12)25(42)34-27(43)33-24)5-14(37)19(39)15(38)6-48-52(44,45)51-53(46,47)49-7-16-20(40)21(41)26(50-16)36-9-31-17-22(28)29-8-30-23(17)36/h3-4,8-9,14-16,19-21,26,37-41H,5-7H2,1-2H3,(H,44,45)(H,46,47)(H2,28,29,30)(H,34,42,43)/t14-,15+,16+,19-,20+,21+,26+/m0/s1
InChI KeyVWWQXMAJTJZDQX-UYBVJOGSSA-N
Chemical Taxonomy
Description Belongs to the class of organic compounds known as flavin nucleotides. These are nucleotides containing a flavin moiety. Flavin is a compound that contains the tricyclic isoalloxazine ring system, which bears 2 oxo groups at the 2- and 4-positions.
KingdomOrganic compounds
Super ClassNucleosides, nucleotides, and analogues
ClassFlavin nucleotides
Sub ClassNot Available
Direct ParentFlavin nucleotides
Alternative Parents
Substituents
  • Flavin nucleotide
  • (3'->5')-dinucleotide
  • (3'->5')-dinucleotide or analogue
  • Purine ribonucleoside diphosphate
  • Purine ribonucleoside monophosphate
  • Flavin
  • Isoalloxazine
  • Pentose-5-phosphate
  • Pentose phosphate
  • Glycosyl compound
  • N-glycosyl compound
  • Diazanaphthalene
  • Pentose monosaccharide
  • Pteridine
  • 6-aminopurine
  • Quinoxaline
  • Organic pyrophosphate
  • Monosaccharide phosphate
  • Imidazopyrimidine
  • Purine
  • Monoalkyl phosphate
  • Aminopyrimidine
  • Pyrimidone
  • Monosaccharide
  • N-substituted imidazole
  • Organic phosphoric acid derivative
  • Imidolactam
  • Benzenoid
  • Alkyl phosphate
  • Phosphoric acid ester
  • Pyrimidine
  • Pyrazine
  • Tetrahydrofuran
  • Azole
  • Vinylogous amide
  • Heteroaromatic compound
  • Imidazole
  • Secondary alcohol
  • Lactam
  • Polyol
  • Oxacycle
  • Azacycle
  • Organoheterocyclic compound
  • Organic oxide
  • Organic oxygen compound
  • Organopnictogen compound
  • Organonitrogen compound
  • Hydrocarbon derivative
  • Primary amine
  • Alcohol
  • Amine
  • Organic nitrogen compound
  • Organooxygen compound
  • Aromatic heteropolycyclic compound
Molecular FrameworkAromatic heteropolycyclic compounds
External Descriptors
Ontology
Physiological effect

Health effect:

Disposition

Route of exposure:

Source:

Biological location:

Role

Industrial application:

Physical Properties
StateSolid
Experimental Properties
PropertyValueReference
Melting PointNot AvailableNot Available
Boiling PointNot AvailableNot Available
Water Solubility5 mg/mLNot Available
logP-1.336Wikipedia
Predicted Properties
PropertyValueSource
logP-0.78ALOGPS
logP-4.7ChemAxon
logS-2.3ALOGPS
pKa (Strongest Acidic)1.85ChemAxon
pKa (Strongest Basic)4.01ChemAxon
Physiological Charge-3ChemAxon
Hydrogen Acceptor Count19ChemAxon
Hydrogen Donor Count9ChemAxon
Polar Surface Area356.42 ŲChemAxon
Rotatable Bond Count13ChemAxon
Refractivity177.43 m³·mol⁻¹ChemAxon
Polarizability70.53 ųChemAxon
Number of Rings6ChemAxon
BioavailabilityNoChemAxon
Rule of FiveNoChemAxon
Ghose FilterNoChemAxon
Veber's RuleNoChemAxon
MDDR-like RuleYesChemAxon
Spectra
EI-MS/GC-MS
MS/MS
NMR
Pathways
Pathways
Protein Targets
Enzymes
Transporters
Protein NameGene NameLocusUniprot IDDetails
NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 11NDUFA1119p13.3Q86Y39 details
Acyl carrier protein, mitochondrialNDUFAB116p12.2O14561 details
Nitric oxide synthase, inducibleNOS217q11.2-q12P35228 details
Metal Bindings
Receptors
Protein NameGene NameLocusUniprot IDDetails
Ectonucleotide pyrophosphatase/phosphodiesterase family member 1ENPP16q22-q23P22413 details
Ectonucleotide pyrophosphatase/phosphodiesterase family member 3ENPP36q22O14638 details
Retinal dehydrogenase 2ALDH1A215q21.3O94788 details
Nitric oxide synthase, brainNOS112q24.2-q24.31P29475 details
Transcriptional Factors
Protein NameGene NameLocusUniprot IDDetails
Heme oxygenase 1HMOX122q13.1P09601 details
Nitric oxide synthase, brainNOS112q24.2-q24.31P29475 details
Isobutyryl-CoA dehydrogenase, mitochondrialACAD811q25Q9UKU7 details
Lysine-specific histone demethylase 1AKDM1A1p36.12O60341 details
Concentrations Data
Not Available
HMDB IDHMDB0001248
DrugBank IDDB03147
Phenol Explorer Compound IDNot Available
FoodDB IDFDB022511
KNApSAcK IDC00001500
Chemspider ID559059
KEGG Compound IDC00016
BioCyc IDFAD
BiGG ID33521
Wikipedia LinkFlavin_adenine_dinucleotide
METLIN ID6106
PubChem Compound643975
PDB IDNot Available
ChEBI ID16238
References
General ReferencesNot Available

Only showing the first 10 proteins. There are 211 proteins in total.

Enzymes

General function:
Involved in oxidoreductase activity
Specific function:
Lipoamide dehydrogenase is a component of the glycine cleavage system as well as of the alpha-ketoacid dehydrogenase complexes. Involved in the hyperactivation of spermatazoa during capacitation and in the spermatazoal acrosome reaction.
Gene Name:
DLD
Uniprot ID:
P09622
Molecular weight:
54176.91
General function:
Involved in acyl-CoA dehydrogenase activity
Specific function:
Not Available
Gene Name:
ACADL
Uniprot ID:
P28330
Molecular weight:
47655.275
General function:
Involved in acyl-CoA dehydrogenase activity
Specific function:
Not Available
Gene Name:
ACADS
Uniprot ID:
P16219
Molecular weight:
44296.705
General function:
Involved in acyl-CoA dehydrogenase activity
Specific function:
This enzyme is specific for acyl chain lengths of 4 to 16.
Gene Name:
ACADM
Uniprot ID:
P11310
Molecular weight:
46587.98
General function:
Involved in oxidation reduction
Specific function:
Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (By similarity).
Gene Name:
MT-ND1
Uniprot ID:
P03886
Molecular weight:
35660.055
General function:
Involved in NADH dehydrogenase activity
Specific function:
Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone
Gene Name:
NDUFB1
Uniprot ID:
O75438
Molecular weight:
6961.2
General function:
Involved in catalytic activity
Specific function:
Involved primarily in ATP hydrolysis at the plasma membrane. Plays a role in regulating pyrophosphate levels, and functions in bone mineralization and soft tissue calcification. In vitro, has a broad specificity, hydrolyzing other nucleoside 5' triphosphates such as GTP, CTP, TTP and UTP to their corresponding monophosphates with release of pyrophosphate and diadenosine polyphosphates, and also 3',5'-cAMP to AMP. May also be involved in the regulation of the availability of nucleotide sugars in the endoplasmic reticulum and Golgi, and the regulation of purinergic signaling. Appears to modulate insulin sensitivity.
Gene Name:
ENPP1
Uniprot ID:
P22413
Molecular weight:
104923.58
General function:
Involved in oxidoreductase activity, acting on NADH or NADPH
Specific function:
Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (By similarity).
Gene Name:
NDUFS2
Uniprot ID:
O75306
Molecular weight:
51851.59
General function:
Involved in succinate dehydrogenase activity
Specific function:
Membrane-anchoring subunit of succinate dehydrogenase (SDH) that is involved in complex II of the mitochondrial electron transport chain and is responsible for transferring electrons from succinate to ubiquinone (coenzyme Q).
Gene Name:
SDHC
Uniprot ID:
Q99643
Molecular weight:
16650.185
General function:
Involved in oxidoreductase activity
Specific function:
Metabolizes sarcosine, L-pipecolic acid and L-proline.
Gene Name:
PIPOX
Uniprot ID:
Q9P0Z9
Molecular weight:
44065.515

Transporters

General function:
Involved in protein transporter activity
Specific function:
Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone
Gene Name:
NDUFA11
Uniprot ID:
Q86Y39
Molecular weight:
14852.0
General function:
Involved in acyl carrier activity
Specific function:
Carrier of the growing fatty acid chain in fatty acid biosynthesis in mitochondria. Accessory and non-catalytic subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), which functions in the transfer of electrons from NADH to the respiratory chain
Gene Name:
NDUFAB1
Uniprot ID:
O14561
Molecular weight:
17417.1
General function:
Involved in oxidoreductase activity
Specific function:
Produces nitric oxide (NO) which is a messenger molecule with diverse functions throughout the body. In macrophages, NO mediates tumoricidal and bactericidal actions. Also has nitrosylase activity and mediates cysteine S-nitrosylation of cytoplasmic target proteins such COX2.
Gene Name:
NOS2
Uniprot ID:
P35228
Molecular weight:
131116.3

Only showing the first 10 proteins. There are 211 proteins in total.