Record Information
Version1.0
Created at2020-03-19 00:39:13 UTC
Updated at2020-12-07 19:07:27 UTC
CannabisDB IDCDB000480
Secondary Accession NumbersNot Available
Cannabis Compound Identification
Common Name(-)-Globulol
Description(-)-Globulol or Globulol belongs to the class of organic compounds known as 5,10-cycloaromadendrane sesquiterpenoids. These are aromadendrane sesquiterpenoids that arise from the C5-C10 cyclization of the aromadendrane skeleton. Sesquiterpenoids are terpenes that contain 15 carbon atoms and are comprised of three isoprene units. The biosynthesis of sesquiterpenes is known to occur mainly through the mevalonic acid pathway (MVA), in the cytosol. However, recent studies have found evidence of pathway crosstalk with the methyl-eritritol-phosphate (MEP) pathway in the plastid (PMID: 19932496 , 17710406 ).. Farnesyl diphosphate (FPP) is a key intermediate in the biosynthesis of cyclic sesquiterpenes. FPP undergoes several cyclization reactions to yield a diverse number of cyclic arrangements. Globulol has been identified in the essential oil from Eugenia uniflora L. (pitanga) (1.5-7.4% relative to total oil constituents) (PMID: 32092893 ), the essential oil of the fruits of Eucalyptus globulus (southern blue gum) (10.69% relative to total oil constituents) (PMID: 20727725 ), the essential oil from Hyptis mutabilis (tropical bushmint) (11.6%-26.6% relative to total oil constituents) (PMID: 24068193 ), the essential oil of the leaves of Lophostemon species (a genus of 4 species of evergreen tree in the myrtle family Myrtaceae native to Australia) (4.7%-15.9% relative to total oil constituents) (DOI: 10.1002/(SICI)1099-1026(200001/02)15:1<17::AID-FFJ859>3.0.CO;2-D), and also in cannabis inflorescence (0.06-0.1% relative to total terpenoids) (PMID: 32094454 ). It has been shown to have sedative, anesthetic activities (PMID: 24068193 ; DOI: 10.1111/raq.12245) and antimicrobial effects (PMID: 18569693 ).
Structure
Thumb
SynonymsNot Available
Chemical FormulaC15H26O
Average Molecular Weight222.37
Monoisotopic Molecular Weight222.1984
IUPAC Name(1aR,4S,4aS,7S,7aR,7bR)-1,1,4,7-tetramethyl-decahydro-1H-cyclopropa[e]azulen-4-ol
Traditional Name(1aR,4S,4aS,7S,7aR,7bR)-1,1,4,7-tetramethyl-octahydro-1aH-cyclopropa[e]azulen-4-ol
CAS Registry Number489-41-8
SMILES
C[C@H]1CC[C@H]2[C@H]1[C@@H]1[C@@H](CC[C@]2(C)O)C1(C)C
InChI Identifier
InChI=1S/C15H26O/c1-9-5-6-10-12(9)13-11(14(13,2)3)7-8-15(10,4)16/h9-13,16H,5-8H2,1-4H3/t9-,10-,11+,12-,13-,15-/m0/s1
InChI KeyAYXPYQRXGNDJFU-WBSYEDSCSA-N
Chemical Taxonomy
ClassificationNot classified
Ontology
Role

Industrial application:

Physical Properties
StateSolid
Experimental Properties
PropertyValueReference
Melting PointNot AvailableNot Available
Boiling PointNot AvailableNot Available
Water SolubilityNot AvailableNot Available
logPNot AvailableNot Available
Predicted Properties
PropertyValueSource
logP3.15ALOGPS
logP3.18ChemAxon
logS-4.7ALOGPS
pKa (Strongest Basic)-0.51ChemAxon
Physiological Charge0ChemAxon
Hydrogen Acceptor Count1ChemAxon
Hydrogen Donor Count1ChemAxon
Polar Surface Area20.23 ŲChemAxon
Rotatable Bond Count0ChemAxon
Refractivity66.6 m³·mol⁻¹ChemAxon
Polarizability27.33 ųChemAxon
Number of Rings3ChemAxon
BioavailabilityYesChemAxon
Rule of FiveYesChemAxon
Ghose FilterYesChemAxon
Veber's RuleYesChemAxon
MDDR-like RuleNoChemAxon
Spectra
EI-MS/GC-MS
TypeDescriptionSplash KeyView
Predicted GC-MS(-)-Globulol, 1 TMS, Predicted GC-MS Spectrum - 70eV, PositiveNot AvailableSpectrum
MS/MS
TypeDescriptionSplash KeyView
Predicted MS/MSPredicted LC-MS/MS Spectrum - 10V, PositiveNot Available2020-06-30View Spectrum
Predicted MS/MSPredicted LC-MS/MS Spectrum - 20V, PositiveNot Available2020-06-30View Spectrum
Predicted MS/MSPredicted LC-MS/MS Spectrum - 40V, PositiveNot Available2020-06-30View Spectrum
Predicted MS/MSPredicted LC-MS/MS Spectrum - 10V, NegativeNot Available2020-06-30View Spectrum
Predicted MS/MSPredicted LC-MS/MS Spectrum - 20V, NegativeNot Available2020-06-30View Spectrum
Predicted MS/MSPredicted LC-MS/MS Spectrum - 40V, NegativeNot Available2020-06-30View Spectrum
NMRNot Available
Pathways
Pathways
Protein Targets
EnzymesNot Available
TransportersNot Available
Metal BindingsNot Available
ReceptorsNot Available
Transcriptional FactorsNot Available
Concentrations Data
Not Available
HMDB IDNot Available
DrugBank IDNot Available
Phenol Explorer Compound IDNot Available
FoodDB IDNot Available
KNApSAcK IDNot Available
Chemspider IDNot Available
KEGG Compound IDNot Available
BioCyc IDNot Available
BiGG IDNot Available
Wikipedia LinkNot Available
METLIN IDNot Available
PubChem CompoundNot Available
PDB IDNot Available
ChEBI IDNot Available
References
General References
  1. da Costa JS, Barroso AS, Mourao RHV, da Silva JKR, Maia JGS, Figueiredo PLB: Seasonal and Antioxidant Evaluation of Essential Oil from Eugenia uniflora L., Curzerene-Rich, Thermally Produced in Situ. Biomolecules. 2020 Feb 19;10(2). pii: biom10020328. doi: 10.3390/biom10020328. [PubMed:32092893 ]
  2. Mulyaningsih S, Sporer F, Zimmermann S, Reichling J, Wink M: Synergistic properties of the terpenoids aromadendrene and 1,8-cineole from the essential oil of Eucalyptus globulus against antibiotic-susceptible and antibiotic-resistant pathogens. Phytomedicine. 2010 Nov;17(13):1061-6. doi: 10.1016/j.phymed.2010.06.018. Epub 2010 Aug 19. [PubMed:20727725 ]
  3. Silva LL, Garlet QI, Benovit SC, Dolci G, Mallmann CA, Burger ME, Baldisserotto B, Longhi SJ, Heinzmann BM: Sedative and anesthetic activities of the essential oils of Hyptis mutabilis (Rich.) Briq. and their isolated components in silver catfish (Rhamdia quelen). Braz J Med Biol Res. 2013 Sep;46(9):771-9. doi: 10.1590/1414-431X20133013. Epub 2013 Sep 18. [PubMed:24068193 ]
  4. Jin D, Dai K, Xie Z, Chen J: Secondary Metabolites Profiled in Cannabis Inflorescences, Leaves, Stem Barks, and Roots for Medicinal Purposes. Sci Rep. 2020 Feb 24;10(1):3309. doi: 10.1038/s41598-020-60172-6. [PubMed:32094454 ]
  5. Tan M, Zhou L, Huang Y, Wang Y, Hao X, Wang J: Antimicrobial activity of globulol isolated from the fruits of Eucalyptus globulus Labill. Nat Prod Res. 2008 May 10;22(7):569-75. doi: 10.1080/14786410701592745. [PubMed:18569693 ]
  6. Schramek N, Wang H, Romisch-Margl W, Keil B, Radykewicz T, Winzenhorlein B, Beerhues L, Bacher A, Rohdich F, Gershenzon J, Liu B, Eisenreich W: Artemisinin biosynthesis in growing plants of Artemisia annua. A 13CO2 study. Phytochemistry. 2010 Feb;71(2-3):179-87. doi: 10.1016/j.phytochem.2009.10.015. Epub 2009 Nov 22. [PubMed:19932496 ]
  7. Towler MJ, Weathers PJ: Evidence of artemisinin production from IPP stemming from both the mevalonate and the nonmevalonate pathways. Plant Cell Rep. 2007 Dec;26(12):2129-36. doi: 10.1007/s00299-007-0420-x. Epub 2007 Aug 21. [PubMed:17710406 ]