Record Information
Version1.0
Created at2020-03-19 00:25:14 UTC
Updated at2020-11-18 16:34:56 UTC
CannabisDB IDCDB000220
Secondary Accession NumbersNot Available
Cannabis Compound Identification
Common Name4a-Methyl-1-methylidene-7-(propan-2-ylidene)-decahydronaphthalene
Descriptionγ-Selinene belongs to the class of organic compounds known as eudesmane, isoeudesmane or cycloeudesmane sesquiterpenoids. These are sesquiterpenoids with a structure based on the eudesmane skeleton. Sesquiterpenes are terpenes that contain 15 carbon atoms and are comprised of three isoprene units. The biosynthesis of sesquiterpenes is known to occur mainly through the mevalonic acid pathway (MVA), in the cytosol. However, recent studies have found evidence of pathway crosstalk with the methyl-eritritol-phosphate (MEP) pathway in the plastid (PMID: 19932496 , 17710406 ). Farnesyl diphosphate (FPP) is a key intermediate in the biosynthesis of cyclic sesquiterpenes. FPP undergoes several cyclization reactions to yield a diverse number of cyclic arrangements. γ-Selinene is a woody tasting compound. It can found in the higher yields within a few different foods, such as gingers, limes, and mandarin orange (clementine, tangerine). γ-Selinene has also been detected, but not quantified, in a few different foods, such as alcoholic beverages, fats and oils, and wild celeries. The selinenes have been identified in a variety of plant sources, including Cannabis sativa (PMID: 26657499 ). There are four known selinene isomers, namely α-, β-, γ-, and δ-selinene. α-Selinene and β-selinene are the most common and are two of the principal components of the oil from celery seeds. γ-Selinene and δ-selinene are less common.
Structure
Thumb
SynonymsNot Available
Chemical FormulaC15H24
Average Molecular Weight204.36
Monoisotopic Molecular Weight204.1878
IUPAC Name(4aR,8aR)-4a-methyl-1-methylidene-7-(propan-2-ylidene)-decahydronaphthalene
Traditional Name(4aR,8aR)-4a-methyl-1-methylidene-7-(propan-2-ylidene)-hexahydro-2H-naphthalene
CAS Registry Number515-17-3
SMILES
CC(C)=C1CC[C@@]2(C)CCCC(=C)[C@H]2C1
InChI Identifier
InChI=1S/C15H24/c1-11(2)13-7-9-15(4)8-5-6-12(3)14(15)10-13/h14H,3,5-10H2,1-2,4H3/t14-,15-/m1/s1
InChI KeyRMZHSBMIZBMVMN-HUUCEWRRSA-N
Chemical Taxonomy
Description Belongs to the class of organic compounds known as sesquiterpenoids. These are terpenes with three consecutive isoprene units.
KingdomOrganic compounds
Super ClassLipids and lipid-like molecules
ClassPrenol lipids
Sub ClassSesquiterpenoids
Direct ParentSesquiterpenoids
Alternative Parents
Substituents
  • Sesquiterpenoid
  • Branched unsaturated hydrocarbon
  • Polycyclic hydrocarbon
  • Cyclic olefin
  • Unsaturated aliphatic hydrocarbon
  • Unsaturated hydrocarbon
  • Olefin
  • Hydrocarbon
  • Aliphatic homopolycyclic compound
Molecular FrameworkAliphatic homopolycyclic compounds
External DescriptorsNot Available
Ontology
Not Available
Physical Properties
StateSolid
Experimental Properties
PropertyValueReference
Melting PointNot AvailableNot Available
Boiling PointNot AvailableNot Available
Water SolubilityNot AvailableNot Available
logPNot AvailableNot Available
Predicted Properties
PropertyValueSource
logP5.27ALOGPS
logP4.48ChemAxon
logS-4.1ALOGPS
Physiological Charge0ChemAxon
Hydrogen Acceptor Count0ChemAxon
Hydrogen Donor Count0ChemAxon
Polar Surface Area0 ŲChemAxon
Rotatable Bond Count0ChemAxon
Refractivity67.19 m³·mol⁻¹ChemAxon
Polarizability25.83 ųChemAxon
Number of Rings2ChemAxon
BioavailabilityYesChemAxon
Rule of FiveYesChemAxon
Ghose FilterYesChemAxon
Veber's RuleYesChemAxon
MDDR-like RuleNoChemAxon
Spectra
EI-MS/GC-MSNot Available
MS/MS
TypeDescriptionSplash KeyView
Predicted MS/MSPredicted LC-MS/MS Spectrum - 10V, PositiveNot Available2020-06-30View Spectrum
Predicted MS/MSPredicted LC-MS/MS Spectrum - 20V, PositiveNot Available2020-06-30View Spectrum
Predicted MS/MSPredicted LC-MS/MS Spectrum - 40V, PositiveNot Available2020-06-30View Spectrum
Predicted MS/MSPredicted LC-MS/MS Spectrum - 10V, NegativeNot Available2020-06-30View Spectrum
Predicted MS/MSPredicted LC-MS/MS Spectrum - 20V, NegativeNot Available2020-06-30View Spectrum
Predicted MS/MSPredicted LC-MS/MS Spectrum - 40V, NegativeNot Available2020-06-30View Spectrum
NMRNot Available
Pathways
Pathways
Protein Targets
EnzymesNot Available
TransportersNot Available
Metal BindingsNot Available
ReceptorsNot Available
Transcriptional FactorsNot Available
Concentrations Data
Not Available
HMDB IDNot Available
DrugBank IDNot Available
Phenol Explorer Compound IDNot Available
FoodDB IDNot Available
KNApSAcK IDNot Available
Chemspider IDNot Available
KEGG Compound IDNot Available
BioCyc IDNot Available
BiGG IDNot Available
Wikipedia LinkNot Available
METLIN IDNot Available
PubChem CompoundNot Available
PDB IDNot Available
ChEBI IDNot Available
References
General References
  1. Schramek N, Wang H, Romisch-Margl W, Keil B, Radykewicz T, Winzenhorlein B, Beerhues L, Bacher A, Rohdich F, Gershenzon J, Liu B, Eisenreich W: Artemisinin biosynthesis in growing plants of Artemisia annua. A 13CO2 study. Phytochemistry. 2010 Feb;71(2-3):179-87. doi: 10.1016/j.phytochem.2009.10.015. Epub 2009 Nov 22. [PubMed:19932496 ]
  2. Towler MJ, Weathers PJ: Evidence of artemisinin production from IPP stemming from both the mevalonate and the nonmevalonate pathways. Plant Cell Rep. 2007 Dec;26(12):2129-36. doi: 10.1007/s00299-007-0420-x. Epub 2007 Aug 21. [PubMed:17710406 ]
  3. Rice S, Koziel JA: Characterizing the Smell of Marijuana by Odor Impact of Volatile Compounds: An Application of Simultaneous Chemical and Sensory Analysis. PLoS One. 2015 Dec 10;10(12):e0144160. doi: 10.1371/journal.pone.0144160. eCollection 2015. [PubMed:26657499 ]