Record Information
Created at2020-03-19 00:35:22 UTC
Updated at2020-11-18 16:35:09 UTC
CannabisDB IDCDB000013
Secondary Accession NumbersNot Available
Cannabis Compound Identification
Common NameCannabidiol-C4
DescriptionCannabidiol-C4 is the butyl analogue of cannabidiol, which is one of the main phytocannabinoids found in Cannabis sativa (PMID: 6991645 ). Cannabidiol-C4 is a resorcinol, which has a meta arrangement of its two hydroxyl groups on the benzene ring. Because of the mixed biosynthetic origins of cannabidiol-C4, it can be considered as a polyketide and a monoterpenoid (DOI: 10.1016/B978-0-12-800756-3.00002-8). Cannabidiol-C4 is a neutral compound. Unlike CBD, research regarding the pharmacological properties of cannabidiol-C4 is scarce.
SynonymsNot Available
Chemical FormulaC20H28O2
Average Molecular Weight300.44
Monoisotopic Molecular Weight300.2089
IUPAC Name5-butyl-2-[(1R,6R)-3-methyl-6-(prop-1-en-2-yl)cyclohex-2-en-1-yl]benzene-1,3-diol
Traditional Name5-butyl-2-[(1R,6R)-3-methyl-6-(prop-1-en-2-yl)cyclohex-2-en-1-yl]benzene-1,3-diol
CAS Registry NumberNot Available
InChI Identifier
Chemical Taxonomy
ClassificationNot classified
Not Available
Physical Properties
Experimental Properties
Melting PointNot AvailableNot Available
Boiling PointNot AvailableNot Available
Water SolubilityNot AvailableNot Available
logPNot AvailableNot Available
Predicted Properties
pKa (Strongest Acidic)9.13ChemAxon
pKa (Strongest Basic)-5.7ChemAxon
Physiological Charge0ChemAxon
Hydrogen Acceptor Count2ChemAxon
Hydrogen Donor Count2ChemAxon
Polar Surface Area40.46 ŲChemAxon
Rotatable Bond Count5ChemAxon
Refractivity93.93 m³·mol⁻¹ChemAxon
Polarizability36.12 ųChemAxon
Number of Rings2ChemAxon
Rule of FiveNoChemAxon
Ghose FilterNoChemAxon
Veber's RuleNoChemAxon
MDDR-like RuleNoChemAxon
TypeDescriptionSplash KeyView
Predicted GC-MSCannabidiol-C4, 1 TMS, Predicted GC-MS Spectrum - 70eV, PositiveNot AvailableSpectrum
Predicted GC-MSCannabidiol-C4, 2 TMS, Predicted GC-MS Spectrum - 70eV, PositiveNot AvailableSpectrum
TypeDescriptionSplash KeyView
Predicted MS/MSPredicted LC-MS/MS Spectrum - 10V, PositiveNot Available2020-06-30View Spectrum
Predicted MS/MSPredicted LC-MS/MS Spectrum - 20V, PositiveNot Available2020-06-30View Spectrum
Predicted MS/MSPredicted LC-MS/MS Spectrum - 40V, PositiveNot Available2020-06-30View Spectrum
Predicted MS/MSPredicted LC-MS/MS Spectrum - 10V, NegativeNot Available2020-06-30View Spectrum
Predicted MS/MSPredicted LC-MS/MS Spectrum - 20V, NegativeNot Available2020-06-30View Spectrum
Predicted MS/MSPredicted LC-MS/MS Spectrum - 40V, NegativeNot Available2020-06-30View Spectrum
NMRNot Available
Protein Targets
EnzymesNot Available
TransportersNot Available
Metal BindingsNot Available
ReceptorsNot Available
Transcriptional FactorsNot Available
Concentrations Data
Not Available
HMDB IDNot Available
DrugBank IDNot Available
Phenol Explorer Compound IDNot Available
FoodDB IDNot Available
KNApSAcK IDNot Available
Chemspider IDNot Available
KEGG Compound IDNot Available
BioCyc IDNot Available
BiGG IDNot Available
Wikipedia LinkNot Available
METLIN IDNot Available
PubChem Compound59444413
PDB IDNot Available
ChEBI IDNot Available
General References
  1. Turner CE, Elsohly MA, Boeren EG: Constituents of Cannabis sativa L. XVII. A review of the natural constituents. J Nat Prod. 1980 Mar-Apr;43(2):169-234. doi: 10.1021/np50008a001. [PubMed:6991645 ]
  2. Dhananjaya BL, Nataraju A, Rajesh R, Raghavendra Gowda CD, Sharath BK, Vishwanath BS, D'Souza CJ: Anticoagulant effect of Naja naja venom 5'nucleotidase: demonstration through the use of novel specific inhibitor, vanillic acid. Toxicon. 2006 Sep 15;48(4):411-21. doi: 10.1016/j.toxicon.2006.06.017. Epub 2006 Jul 7. [PubMed:16899266 ]
  3. Achterholt S, Priefert H, Steinbuchel A: Identification of Amycolatopsis sp. strain HR167 genes, involved in the bioconversion of ferulic acid to vanillin. Appl Microbiol Biotechnol. 2000 Dec;54(6):799-807. doi: 10.1007/s002530000431. [PubMed:11152072 ]
  4. Overhage J, Priefert H, Steinbuchel A: Biochemical and genetic analyses of ferulic acid catabolism in Pseudomonas sp. Strain HR199. Appl Environ Microbiol. 1999 Nov;65(11):4837-47. [PubMed:10543794 ]
  5. Plaggenborg R, Steinbuchel A, Priefert H: The coenzyme A-dependent, non-beta-oxidation pathway and not direct deacetylation is the major route for ferulic acid degradation in Delftia acidovorans. FEMS Microbiol Lett. 2001 Nov 27;205(1):9-16. doi: 10.1111/j.1574-6968.2001.tb10918.x. [PubMed:11728709 ]
  6. Venturi V, Zennaro F, Degrassi G, Okeke BC, Bruschi CV: Genetics of ferulic acid bioconversion to protocatechuic acid in plant-growth-promoting Pseudomonas putida WCS358. Microbiology. 1998 Apr;144 ( Pt 4):965-73. doi: 10.1099/00221287-144-4-965. [PubMed:9579070 ]